

1

March 12, 2025

C964: Computer Science Capstone
Task 2 parts A, B, C and D
Part A: Letter of Transmittal ... 2

Part B: Project Proposal Plan .. 4

Data Summary .. 4

Implementation ... 5

Timeline .. 6

Evaluation Plan ... 7

Resources and Costs ... 8

Part C: Application .. 9

Part D: Post-implementation Report ... 10

Solution Summary .. 10

Data Summary .. 10

Machine Learning ... 11

Validation ... 11

Visualizations .. 12

User Guide .. 14

Reference Page .. 17

2

Part A: Letter of Transmittal
3/12/2025

Aden Smith

Apex Banking

341 Main St Denver, Colorado 80014

Dear Aden,

Apex Banking strives to provide quality credit card transaction services to clients worldwide. Currently,

Apex Banking faces a problem with inadvertently processing fraudulent charges on behalf of the clients for whom

we provide services. Correcting these processed fraudulent charges is resource intensive, can lead to legal issues,

and detracts us from focusing on other important business areas. These problems can ultimately produce a

noticeable decline in the quality we strive for. While it’s nearly impossible to prevent processing every fraudulent

charge between all clients, there is a solution to mitigate or avoid this costly risk. I’m proposing the creation of an

application that predicts the risk of fraud based on a transaction’s location, payment method, and industry.

This application will give Apex Banking insight into which types of transactions are more high-risk. Analysis

of the likelihood of processing a fraudulent charge allows Apex Banking to make critical decisions, such as which

businesses to provide services for. If a potential client comes to Apex Banking seeking a credit card transaction

solution, we could run the fraud prediction application by inputting the city where the client is located, their

current payment method, and the client’s industry. Based on the fraud prediction results for those parameters,

Apex Banking can decide to provide services to the client or reject working with the client if the risk of processing a

fraudulent charge is too high. Apex Banking could also check if the risk of fraud is lowered when a different

payment method is used. If a point of sales (POS) transaction is less risky than an online transaction for that client’s

location and industry, Apex Banking could stipulate that they’ll only process credit card transactions for that

client’s POS sales. The fraud prediction application will significantly benefit Apex Banking by saving the company

time and money through better insights into key decisions.

The overall cost of developing this application is expected to be $107,400. This will cover the salary of

three developers, a QA tester, product licenses, and hardware. The estimated timeline is three months, with two

3

months set aside for development and one month for the final validation testing. The data used to train the

Random Forest model, which the program will use to predict the risk of a fraudulent charge, can be trained with a

dataset sourced from the web or from transactional data Apex Banking has collected and stored. This data must be

cleaned before training the model by removing any irrelevant or missing information. To best protect sensitive

information, any dataset obtained will have all personally identifiable information stripped from it. This will help

alleviate ethical concerns and ensure this application isn’t breaking regulations. All data generated from the

application will be stored locally to guarantee that only Apex Banking employees have physical access.

I'd be the best candidate to head this project due to my relevant experience. I have knowledge of the

different kinds of machine learning models currently available and which would best suit this project. I’m well-

versed in several programming languages like Python, Java, and C++. I have extensive experience with the software

development process from start to finish and know the best approach for developing this application. I have also

written a design and test plan for previous roles. With my education and experience, I guarantee this application

will be designed efficiently while keeping the project on time.

Sincerely,

Zachary Tracy

Zachary Tracy, Junior Developer

4

Part B: Project Proposal Plan
Apex Banking, a company that processes client credit card transactions, is losing resources and

money by inadvertently processing fraudulent charges. Processing these charges leads to investigations
that require a person or even a team of people to review the transactions. The legal team might also have
to dedicate time to dealing with the fraudulent charges that have been processed. By having a fraud
prediction application, Apex Banking can significantly reduce the number of processed fraudulent
charges by selectively choosing to work with clients who have a lower risk of credit card fraud. This can
be accomplished by using the application to estimate the odds of processing a fraudulent charge based on
a client’s location, payment method, and industry.

Deliverables for this project include an executable file and a user guide. The executable file will
be for Windows operating systems. The executable will contain all the necessary dependencies for the
application to run on any computer. Through a command line interface (CLI), the user can either start a
web server to interact with the front-end GUI, perform maintenance for the system, or view information
and visuals on the machine learning model. The user guide will outline how to start the application and
navigate the different options.

This fraud prediction application will benefit Apex Banking by allowing them to gather additional
information on the risk a client might pose for processing fraudulent charges. Based on this data, Apex
Banking can make better decisions on which clients to provide services for or if a client needs to make
changes to how they process payments.

Data Summary

The raw data can be sourced from the internet or from the transactions that Apex Banking
handles. If data is used from the internet, a website like Kaggle.com can be utilized to find credit
card transactional data as it allows users to upload and share large datasets. The benefit of using a
dataset from the internet is that it’s quick and easy to obtain. However, it should be reviewed for
accuracy. Finding a dataset with all the information needed for the application might also be
challenging. Suppose Apex Banking decides to use its own transactional data. In that case, a
dataset can be created from prior transactions if that information is saved, or transactional data
collection can begin specifically for this project. A column stating if the transaction was
fraudulent must be included, and all personally identifiable information must be stripped from the
dataset. No matter which way the data is sourced from, there will always be more non-fraudulent
charges compared to fraudulent ones. Due to this, the data set will have to be balanced before
being used in a machine-learning model.

During the development lifecycle for this application, the data used to train the model
will have to be processed and managed. In the design phase, a data structure must be chosen, and
the required information must be outlined. A CSV file will hold the dataset for the fraud
prediction application. At a minimum, the data needed to train the model are columns on detected
fraud, location, payment method, and industry. Other columns can be beneficial to increase the

5

model's accuracy, such as time of day, risk score, or device type used. The source of the data will
also be decided during the design stage. In the development phase, the picked dataset must be
cleaned and prepared for use in the machine learning model. First, any personally identifiable
information (PII) must be removed to ensure all regulations are met. Next, any missing or
irrelevant data will be dropped from the dataset to decrease inaccuracies. Afterward, specific
columns must be encoded if they are categorical variables, while columns with numerical
variables are to be scaled. This allows the model to make use of columns with string values and,
more accurately, use floats and integers. A new CSV file can be generated with these
modifications and fed into the machine learning model. For the maintenance phase, any recently
acquired transactional data will be added to the dataset and then cleaned for use in the model.
Giving the model more data to train on can further increase its accuracy. All information and
datasets will be stored locally to keep the data within Apex Banking.

Obtaining the data from a dataset found online meets the project's needs, as fraud
detection datasets are already available on websites like Kaggle.com. These datasets are cleaned
of personally identifiable information (PII) and can be compared with ‘usability’ scores. Before
using a desired dataset from the internet, it will need to be reviewed for completeness, accuracy,
and relevancy. Relevancy is determined by how well the data correlates with the issue the
machine learning model tries to solve. In this case, datasets with the necessary information are
available to help predict credit card fraud. The project's needs will also be met if Apex Banking
wants to use data from its own transactions. This data must be formatted into a CSV file, stripped
of personally identifiable information (PII), and then any unnecessary information must be
removed. Company resources will need to be allocated to collect this data if it’s not already
present. Relevancy isn’t a concern as Apex Banking directly deals with credit card transactions
for clients, meaning they will have the infrastructure needed to predict credit card fraud. Both
methods for obtaining the raw data will not face the challenge of outliers as the target variable is
binary. Incomplete data will be removed from the dataset entirely to avoid any potential issues
caused by it.

There will be no ethical or legal concerns when collecting this data as all personally
identifiable information (PII) will be removed before running the cleaned data through the
machine learning model. Any data obtained through online sources will be reviewed thoroughly
for PII, and all data coming from Apex Banking will be stripped of PII before use. If Apex
Banking currently stores transactional data, its database will have already undergone the correct
procedures for storing customer information security to comply with all laws. If transactional data
will be collected by Apex Banking solely for this project, then separate hardware needs to be
purchased and configured to meet all regulatory requirements.

Implementation

The agile methodology will be used to implement this project. The agile method is a
popular industry standard for developing software as it’s well-structured but also allows for
excellent flexibility during development. This is possible by breaking down the project into
smaller segments called sprints. Changes in functionality and requirements can be easily
integrated into the project, even towards the end of development. Also, validation testing can
occur for each sprint instead of waiting for the entire project to be finished.

6

 The fraud prediction application will be broken up into four sprints as the project has
four major milestones. The first sprint will consist of creating a Python file that reads a raw fraud
detection CSV file and then creates and saves the cleaned data to a new CSV file. The second
sprint will focus on creating and training a machine-learning model. The model being used is a
Random Forest, as it's simple yet effective at classifying information and then making a
prediction. In this case, the classification is what variables are or are not associated with
fraudulent credit card charges. The third sprint will aim to complete a web-facing front-end and
its associated functionalities. This internal website will allow users to easily select their
parameters through dropdown menus and then see a prediction alongside three visuals. The fourth
sprint will complete the task of tying all the previously completed functionalities together and
adding maintenance functionality. This will be done through a CLI interface with a main menu
and submenus. The user will be presented with options such as starting up the internal website,
viewing graphs and information about the Random Forest model, and re-running the model or
CSV cleaning protocol.

Timeline

Milestone or
deliverable

Duration
(hours or days)

Projected start date Anticipated end date

Collecting or finding

a suitable raw dataset
4 days 04/01/2025 04/04/2025

Sprint #1: Cleaning

dataset functionality
10 days 04/07/2025 04/18/2025

Sprint #2: Random

Forest creation and

training

15 days 04/21/2025 05/09/2025

Sprint #3:

Development of a

GUI and its

functionalities

10 days 05/12/2025 05/23/2025

Sprint #4: CLI menus 10 days 05/26/2025 06/06/2025

7

and model

maintenance

functionality

Validation testing of

the final product
15 days 06/09/2025 06/27/2025

Creation of the user

guide
5 days 06/30/2025 07/04/2025

Delivering the

application and user

guide

1 day 07/07/2025 07/07/2025

Evaluation Plan

To verify the application’s separate functionalities are working as intended, each sprint
needs its produced code validated. For the first sprint, verification includes checking to ensure the
created clean CSV file doesn’t have any missing data, all included columns are present, and no
personally identifiable information (PII) is found. The second sprint will require verification of
the Random Forest by checking the model's accuracy and ensuring it is balanced. This can be
achieved through built-in functions of the sklearn.metrics library for Python. The machine
learning model also must be checked for recall and the f1 score. The third sprint needs
verification that no errors occur in the GUI when a prediction is made and that visuals are
generated correctly by testing every combination of available options on the dropdown menus.
Accuracies for generated predictions will be verified by comparing them to known credit card
fraud percentages for several different parameter combinations. For the fourth sprint, verification
will occur by testing each menu option to ensure the associated functionality happens. No errors
or hangups should be present. The maintenance functionality should display information and
graphs accurately and neatly.

Before delivering the application, the complied executable file for Windows must be
validated. There should be no discrepancies between the application running on the executable
file and in the integrated development environment (IDE). This includes bugs and information
accuracy. To validate this, the executable file must have all menu options selected to verify the
expected result happens for each one. Afterward, the executable version and IDE version of the
application must be run in parallel to confirm the outputted data from the executable matches the
data generated in the IDE version. All files and functions are validated and verified at the end of

8

each sprint. If the executable file displays the same information without bugs, then the application
is ready for deployment.

Resources and Costs

Hardware and software costs:

Resource Description Cost
Servers A dedicated server for the

development of the
application.

$4,000

Operating System The server requires its own
copy of Windows 10

Professional.

$200

Networking Ethernet cables are required
to connect the server to the

existing network
infrastructure at Apex

Banking.

$25

JetBrains PyCharm
Professional IDE

An IDE to develop the
application in Python. Each
of the three developers will

need a license at $25 a month.
The project will take a total of

three months

$225

Employee Laptops The team assigned to develop
and test this project will use

laptops already given to them.
These will be used to write
code and documentation.

$0

Labor time and costs:

Resource Description Cost
Developer Labor Each developer has an annual

salary of $100,000. There are
a total of three developers,
and the project took three
months to complete. The

estimated labor time for each
developer is 400 working

hours.

$75,000

QA Tester Labor The QA Tester has an annual
salary of $75,000. There is
only one QA tester, and the
project took three months to

complete. The estimated labor
time for the QA tester is 160

$18,750

9

hours.

Environment costs of the application:

Resource Description Total Cost
Servers Two dedicated servers will be

solely used to run the
application.

$8,000

Operating System Each Server requires its own
copy of Windows 10

Professional.

$400

Networking Ethernet cables are required
to connect the servers to the

existing network
infrastructure at Apex

Banking.

$50

Spare Server Parts and Cables Extra parts and cabling must
be on standby for hardware

maintenance.

$750

 The estimated total cost of developing, testing, and deploying this application is $107,400.

Part C: Application
List of submitted files:

• Fraud_Predict_App_Win (For Windows)
• App_Source_Files.zip

10

Part D: Post-implementation Report

Solution Summary

Apex Banking faced a problem with inadvertently processing fraudulent credit card
charges for their clients. These fraudulent charges were proving to be costly and resource-
intensive; hence, discovering a way to decrease them was a top priority. The solution ended up
being the creation of an application that can predict the risk of fraudulent charges through a
machine learning model. The application is a stand-alone executable file, ensuring that all
dependencies are accounted for while being quick and straightforward to deploy. It has a user-
friendly GUI for predicting fraud based on three key parameters and maintenance options to view
information regarding the machine learning model (Random Forest).
The application provides a solution for Apex Banking, allowing users to view the percentage and
associated graphs for credit card fraud prediction based on the selected location, payment method,
and industry type. This has addressed the issue Apex Banking was facing because clients can now
be analyzed for the risk of fraudulent charges before Apex Banking begins working with them.
To run this prediction, an Apex Banking employee must navigate to an internal website and select
the parameters that best fit the potential client when the application runs on the dedicated servers.
The employee could even check several payment methods and then work with the client only if
they switch their transactions to a less risky payment method. Admins have access to the
application CLI menus on the servers, meaning they can update the raw data and then create a
new cleaned CSV file for the model to use. They can also retrain the Random Forest model, view
statistics on the accuracy of the current model, and see three visualizations regarding the current
model. The internal website can also be stopped and started from the GUI if the model is updated.
The fraud prediction application has given Apex Banking the tools to reduce the risk of
processing fraudulent charges by selectively choosing their clients. It's also easy for the IT team
at Apex Banking to manage this application through its effective CLI.

Data Summary

The data for this application was sourced from a CSV file found on Kaggle.com titled
“Fraud Detection Transactions Dataset”. This dataset was ultimately chosen over Apex Banking’s
own transactional data as it was quick to obtain, organized, and already mostly cleaned. This
allowed more time to focus on the development of the app rather than collecting transactional
data. The online dataset was also free of personally identifiable information (PII) as there is only
an anonymous ‘User ID’ column to identify people. This raw data meets the needs for training the
machine learning model because it included important columns such as ‘Fraud Label’, ‘Location’,
‘Transaction Type’ and ‘Merchant Category’. Other notable columns were ‘Timestamp' and ‘Risk
Score’.

The design phase included deciding on a way to source the raw data by weighing the pros
and cons of each collection type and then ensuring the dataset was suitable for training the model.
As discussed, a CSV file selected from Kaggle.com was chosen as the best source of the needed

11

data. For the development phase, the chosen raw dataset was cleaned by removing any rows with
empty cells and deleting irrelevant columns such as ‘Transaction ID’. Additional columns were
added to increase accuracy by combining or modifying information from different rows.
Afterward, numerical data was scaled, and categorical data was encoded to allow the information
to be more accurately used for training the model. It was discovered during the training of the
model that the dataset was significantly imbalanced due to the larger number of non-fraudulent
charges compared to fraudulent ones. To fix this, the number of fraudulent charges was
artificially inflated through oversampling. This change helped drastically improve the accuracy of
the Random Forest model. There has been no need to process or manage the raw data further in
the maintenance phase. The raw dataset and all created data are stored within the temporary
folder generated by the application when it is executed. Upon exiting the application, all data is
deleted. Suppose an IT admin from Apex Banking wishes to store any data permanently. In that
case, they will need to navigate to the temporary folder for the application and copy the file
before closing the application. For this reason, the CLI for the application shares the file path to
where the files are stored.

Machine Learning

The machine learning model used for this application is the Random Forest model. A
Random Forest is considered a supervised learning model, requiring labeled training data to learn
patterns. From these learned patterns, the model can make predictions. This project is trying to
predict the chances of fraudulent credit card charges using the cleaned “Fraud Detection
Transactions Dataset” found on Kaggle.com. The Random Forest model is a subcategory of
ensemble learning as it uses multiple decision trees to increase its predictive accuracy.

 The sklearn library was used to implement the Random Forest model into this
application. This library has functions that make generating a Random Forest simple. After
generating the model with the cleaned dataset, it is saved as a PKL file type and added to a
temporary folder. The saved model is then loaded to make the predictions in the user GUI based
on the chosen parameters. This way, the model doesn’t have to be regenerated each time the user
changes the parameters for another prediction. The model is also loaded for some maintenance
options, such as viewing the accuracy of the model or seeing the three generated graphs
associated with it.

The Random Forest model was chosen for this application as it excels at prediction
through classification compared to other machine learning models. This model offers the
simplicity of a decision tree but with a higher degree of accuracy as it’s more consistent with
capturing actual patterns instead of noise. A Random Forest model also handles imbalanced data
well, which is essential considering there will always be many more regular transactions than
fraudulent ones in a dataset.

Validation

Validation of the Random Forest model was achieved by using the train-test splitting
technique through the sklearn library for Python. After loading the cleaned dataset, it was split
between use in model training and testing. To reduce the impact of removing useful data from

12

model training, only 20% of the dataset was allocated for testing. After splitting the dataset and
training the model, accuracy was validated using the accuracy_score() function from the sklearn
library. A classification report was also generated using classification_report() to view the recall
and f1 score of the model.

The Random Forest model achieved an overall accuracy of 81.7% through trial and error
by adjusting different metrics, such as adding additional columns, removing columns with a low
correlation score, and testing various decision thresholds. For predicting fraudulent charges, the
model has a recall of 68% and a f1 score of 79%. For predicting non-fraudulent charges, a recall
of 96% was given with a f1 score of 84%. Research and the development of a different machine-
learning model might be required to obtain a more accurate prediction in the future.

Visualizations

Six unique visualizations can be found in the fraud prediction application. Three graphs can be viewed on
the user GUI interface to predict fraud based on selected parameters. These graphs give a filtered
visualization of information depending on the combination of parameters selected.

The other three graphs can be viewed in the application's CLI by selecting the following options starting
from the “CLI for fraud prediction system” menu (do not include the quotes surrounding each number):

1. Type “2” and hit enter on your keyboard to navigate to the “Maintenance Menu”.
2. Type “2” and hit enter on your keyboard to navigate to the “Graph Menu”.
3. Type either “1”, “2”, or “3” and hit enter on your keyboard to select, generate, then view a graph.

These graphs share information related to the entire generated Random Forest model the application uses.

13

14

User Guide

To download, start, and stop the application:

Step
Number

Action Expected Result

1 Locate the downloadable executable files for the
application in its designated location.

Note: This location will be in the current C964
Task 2 attempt for evaluators.

Two downloadable files labeled
Fraud_Predict_App_Win
and Fraud_Predict_App_Mac will be
visible in the designated location.

2 Find and download the correct executable file
for Windows named:

Fraud_Predict_App_Win.

The executable for Windows will be
found and then downloaded to their
system.

3 Double-click on the downloaded executable file
to start the application.

Note: if a warning appears stating “Windows
protected your PC” find and click the “Run
anyways” option. “More info” may have to be
clicked to get “Run anyways” to appear. No
publisher information was submitted to
Microsoft for this project.

The user’s command line interface will
appear, and the program will start.

4 Please wait 30-60 seconds for the “CLI for
fraud prediction system” menu to appear.

The application will automatically clean
the raw dataset and train the model upon

15

Note: This is dependent on your system’s
performance. The timeframe can be anywhere
between 15 seconds to 90 seconds. The average
is approximately 40 seconds.

startup. After completion, the “CLI for
fraud prediction system” menu will
appear.

5 To stop the application, type “0” (do not include
the quotes) and hit enter on your keyboard while
viewing the “CLI for fraud prediction system”
menu.

The application will terminate for the
user.

To start, use, and shut down the GUI:

Step
Number

Action Expected Result

1 With the application started and the “CLI for
fraud prediction system” menu displayed, type
“1” (do not include the quotes) and hit enter on
your keyboard to start the user GUI interface for
predicting fraud based on selected parameters.

The local host server will start up, and a
tab on the user’s default browser should
open if the user's system permits it.

2 A new tab on your browser should now be open
with the GUI interface titled “Credit Card Fraud
Risk Predictor".

Note: If this has not happened, please navigate
to your preferred browser and type in the
address displayed in the CLI.

The GUI will appear for the user with
the title “Credit Card Fraud Risk
Predictor". If the user’s system doesn’t
allow the application to launch and/or
open a tab in the default browser, the
GUI is still accessible by typing in the
address shown in the CLI.

3 Select your desired parameters from each
dropdown menu to interact with the GUI, then
click the "Predict Fraud Risk” button.

When the user selects “Predict Fraud
Risk”, a fraud prediction percentage will
appear on screen and the three graphs
will populate.

4 To shut down the GUI, navigate back to the CLI
where the application is currently running. Click
"Control + C" on your keyboard.

After returning to the CLI and clicking
CTRL + C, the local server will shut
down, and the user will be returned to
the “CLI for fraud prediction system”
menu.

To view information about the ML model and re-run functionalities:

Step
Number

Action Expected Result

1 With the application started and the “CLI for
fraud prediction system” menu displayed, type
“2” (do not include the quotes) and hit enter on
your keyboard to navigate to the “Maintenance
Menu”.

The “Maintenance Menu” will appear in
the CLI.

2 Within the “Maintenance Menu”, to view text-
based information regarding the currently

Information such as overall accuracy,
recall, f1 scores, and a correlation matrix

16

generated Random Forest model, type “1” (do
not include the quotes) and hit enter on your
keyboard.

will appear in the CLI for the user. The
“Maintenance Menu” will reappear at
the end to allow the user to select
another option.

3 Within the “Maintenance Menu”, to generate
visuals regarding the currently generated
Random Forest model, type “2” (do not include
the quotes) and hit enter on your keyboard.

A “Graph Menu” will appear for the user
to select which graph they would like to
generate and view.

4 Within the “Graph Menu”, type either “1”, “2”,
or “3” (do not include the quotes) then hit enter
on your keyboard to generate and view your
desired graph.

Note: If your default image viewer doesn’t
automatically launch with an image of the
generated graph, please navigate to the
temporary folder in which the graph was saved
to view it. This temporary folder will be
displayed on the CLI.

Upon choosing a number to type and
then hitting enter, the application will
generate the desired graph, save it to a
temporary folder in the user's system,
and then automatically open an image of
the graph in the user's default image
viewer. This image can still be viewed in
the temporary folder displayed on the
CLI if the user’s system denies the
application access to launch the image
viewer. The “Graph Menu” will
reappear after the image is generated to
allow the user to choose another option.

5 To exit the “Graph Menu” and return to the
“Maintenance Menu”, type “0” (do not include
the quotes) and hit enter on your keyboard.

The “Maintenance Menu” will appear on
the CLI.

6 Within the “Maintenance Menu”, to re-run the
functionality that cleans the raw dataset, type
"3" (do not include the quotes) and hit enter on
your keyboard.

The raw dataset file will be cleaned
again and replaced with the previously
saved cleaned dataset CSV file. The
“Maintenance Menu” will reappear on
the CLI.

7 Within the “Maintenance Menu”, to re-run the
functionality that trains the Random Forest
model, type "4" (do not include the quotes) and
hit enter on your keyboard.

Note: retraining the model can take a few
moments.

The Random Forest model will be
retrained and replaced with the currently
saved model. The “Maintenance Menu”
will reappear on the CLI.

8 To return to the “CLI for fraud prediction
system” menu, type “0” (do not include the
quotes) and hit enter on your keyboard.

The “CLI for fraud prediction system”
menu will appear on the CLI.

17

Reference Page

No references were used for this task.

